Repression of Mitochondrial Translation, Respiration and a Metabolic Cycle-Regulated Gene, SLF1, by the Yeast Pumilio-Family Protein Puf3p

نویسندگان

  • Marc Chatenay-Lapointe
  • Gerald S. Shadel
چکیده

Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3'-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast Mitochondrial Biogenesis: A Role for the PUF RNA-Binding Protein Puf3p in mRNA Localization

The asymmetric localization of mRNA plays an important role in coordinating posttranscriptional events in eukaryotic cells. We investigated the peripheral mitochondrial localization of nuclear-encoded mRNAs (MLR) in various conditions in which the mRNA binding protein context and the translation efficiency were altered. We identified Puf3p, a Pumilio family RNA-binding protein, as the first tra...

متن کامل

Puf3p induces translational repression of genes linked to oxidative stress

In response to stress, the translation of many mRNAs in yeast can change in a fashion discordant with the general repression of translation. Here, we use machine learning to mine the properties of these mRNAs to determine specific translation control signals. We find a strong association between transcripts acutely translationally repressed under oxidative stress and those associated with the R...

متن کامل

Carbon source-dependent alteration of Puf3p activity mediates rapid changes in the stabilities of mRNAs involved in mitochondrial function

The Puf family of RNA-binding proteins regulates gene expression primarily by interacting with the 3' untranslated region (3' UTR) of targeted mRNAs and inhibiting translation and/or stimulating decay. Physical association and computational analyses of yeast Puf3p identified >150 potential mRNA targets involved in mitochondrial function. However, only COX17 has been established as a target of P...

متن کامل

Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast

Puf3p binds preferentially to messenger RNAs (mRNAs) for nuclear-encoded mitochondrial proteins. We find that Puf3p localizes to the cytosolic face of the mitochondrial outer membrane. Overexpression of PUF3 results in reduced mitochondrial respiratory activity and reduced levels of Pet123p, a protein encoded by a Puf3p-binding mRNA. Puf3p levels are reduced during the diauxic shift and growth ...

متن کامل

Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011